مقایسهی مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیشبینی بقای بیماران مبتلا به سرطان معده
Authors
Abstract:
سابقه و هدف: یکی از روشهای آماری تحلیل دادههای بقا، مدل رگرسیونی کاکس است که نیازمند پذیرههایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر بهکارگیری مدل شبکه عصبی مصنوعی برای پیشبینی دادههای بقا، افزایش یافته است. این مطالعه به منظور پیشبینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است. مواد و روشها: طی سالهای 1381 لغایت 1385، تعداد 436 بیمار مراجعهکننده با تشخیص قطعی سرطان معده که در بخش گوارش بیمارستان طالقانی تحت عمل جراحی قرار گرفتند به صورت همگروه تاریخی مطالعه شدند. دادهها به طور تصادفی به دو گروه آموزشی و آزمایشی (اعتبارسنجی) تقسیم شدند. برای تحلیل دادهها از روش کاپلان-مایر، مدل مخاطرات متناسب کاکس و یک مدل شبکهی عصبی مصنوعی سه لایه استفاده شد. برای مقایسهی پیشبینیهای دو مدل، از سطح زیر منحنی مشخصه عملکرد و صحت کلاسبندی استفاده شد. یافتهها: صحت پیشبینی مدل شبکه عصبی برابر 51/81 درصد و مدل رگرسیونی کاکس برابر 60/72 درصد گردید. سطح زیر منحنی مشخصه عملکرد برای مدل شبکهی عصبی و رگرسیون کاکس به ترتیب برابر 6/82 درصد و 4/75 درصد به دست آمد. نتیجهگیری: مدل شبکهی عصبی مصنوعی نسبت به مدل رگرسیون کاکس پیشبینیهای بهتری نتیجه داد. لذا بهکارگیری مدل شبکه عصبی مصنوعی در زمینه پیشبینی بقا پیشنهاد میشود. این امر در تحقیقات مرتبط با حوزهی سلامت و بهخصوص در تخصیص منابع درمانی لازم برای افرادیکه پرمخاطره پیشبینی میشوند با اهمیت است.
similar resources
مقایسه مدل شبکه عصبی مصنوعی و رگرسیون پارامتری در پیشبینی بقای بیماران مبتلا به سرطان معده
Background & Objective: Using parametric models is common approach in survival analysis. In the recent years, artificial neural network (ANN) models have increasingly used in survival prediction. The aim of this study was to predict of survival rate of patients with gastric cancer by using a parametric regression and ANN models and compare these methods. Methods: We used the data of 436 gast...
full textمقایسه مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان پستان
مقدمه: امروزه انواع سرطان یکی از مهم ترین عوامل مرگ و میر در دنیا و سرطان پستان از شایع ترین آن ها در زنان میان سال می باشد. میزان بقای پس از تشخیص و درمان در این بیماران یکی از شاخص های مهم در کنترل بیماری است. در این مطالعه دو مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران سرطان پستان با یکدیگر مقایسه شده اند. مواد و روش ها: داده های این پژوهش که از نوع مطالعات بقا است، از پرون...
full textمقایسه ی مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان معده
سابقه و هدف: یکی از روش های آماری تحلیل داده های بقا، مدل رگرسیونی کاکس است که نیازمند پذیره هایی مانند متناسب بودن مخاطرات است. در چند دهه اخیر به کارگیری مدل شبکه عصبی مصنوعی برای پیش بینی داده های بقا، افزایش یافته است. این مطالعه به منظور پیش بینی بقای بیماران مبتلا به سرطان معده به کمک دو مدل رگرسیونی کاکس و شبکه عصبی مصنوعی انجام شده است. مواد و روش ها: طی سال های 1381 لغایت 1385، تعداد 4...
full textمقایسه رگرسیون کاکس و مدل های پارامتریک در تحلیل بقای بیماران مبتلا به سرطان معده
Background & Objectives: Although Cox regression is commonly used to detect relationships between patient survival and demographic/clinical variables, there are situations where parametric models can yield more accurate results. The objective of this study was to compare two survival regression methods, namely Cox regression and parametric models, in patients with gastric carcinoma registered a...
full textمقایسه مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیشبینی بقای بیماران لوسمی حاد
چکید ه سابقه و هدف مدل رگرسیون کاکس، یکی از روشهای رایج تحلیل دادههای بقا میباشد که قبل از به کارگیری آن لازم است فرض متناسب بودن خطرات برقرار باشد. اخیراً مدلهای شبکه عصبی بدون نیاز به فرض خاص، جایگزینی مناسب در پیشبینی بقا میباشند. هدف از این مطالعه، مقایسه توانایی مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیشبینی بقای بیماران لوسمی حاد بود. مواد و روشها در یک مطالعه گذشتهنگر...
full textمقایسه مدل شبکه عصبی مصنوعی و رگرسیون کاکس در پیش بینی بقای بیماران مبتلا به سرطان پستان
مقدمه: امروزه انواع سرطان یکی از مهم ترین عوامل مرگ و میر در دنیا و سرطان پستان از شایع ترین آن ها در زنان میان سال می باشد. میزان بقای پس از تشخیص و درمان در این بیماران یکی از شاخص های مهم در کنترل بیماری است. در این مطالعه دو مدل رگرسیون کاکس و شبکه عصبی مصنوعی در پیش بینی بقای بیماران سرطان پستان با یکدیگر مقایسه شده اند. مواد و روش ها: داده های این پژوهش که از نوع مطالعات بقا است، از پروند...
full textMy Resources
Journal title
volume 11 issue 3
pages 215- 220
publication date 2010-04
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023